Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model.
نویسندگان
چکیده
The Elastic Network Model is used to investigate the open/closed transition in all DNA-dependent polymerases whose structure is known in both forms. For each structure the model accounts well for experimental crystallographic B-factors. It is found in all cases that the transition can be well described with just a handful of the normal modes. Usually, only the lowest and/or the second lowest frequency normal modes deduced from the open form give rise to calculated displacement vectors that have a correlation coefficient larger than 0.50 with the observed difference vectors between the two forms. This is true for every structural class of DNA-dependent polymerases where a direct comparison with experimental structural data is available. In cases where only one form has been observed by X-ray crystallography, it is possible to make predictions concerning the possible existence of another form in solution by carefully examining the vector displacements predicted for the lowest frequency normal modes. This simple model, which has the advantage to be computationally inexpensive, could be used to design novel kind of drugs directed against polymerases, namely drugs preventing the open/closed transition from occurring in bacterial or viral DNA-dependent polymerases.
منابع مشابه
The intrinsic dynamics and function of nickel-binding regulatory protein: insights from elastic network analysis.
Nickel-responsive protein NikR regulates the nickel uptake in nickel-dependent bacteria by interacting with the operator of nikABCDE and subsequently repressing the transcription of NikABCDE, an ABC-type nickel transporter system. The function of NikR and its affinity for the operator DNA is highly conformation-dependent, which has been confirmed by three independent crystallographic studies on...
متن کاملAllosteric transitions in biological nanomachines are described by robust normal modes of elastic networks.
Allostery forms the basis of intra-molecular communications in various enzymes, however the underlying conformational changes are largely elusive. Recently, we have proposed to employ an elastic model based normal mode analysis to investigate the allosteric transitions in several molecular nanomachines (including myosin II, DNA polymerase and chaperonin GroEL). After combining with bioinformati...
متن کاملReview: Elastic Network Model for Protein Structural Dynamics
Proteins and their complexes undergo conformational changes, which are closely related to their unique biological functions. However, it is of great challenge for both theoretical and experimental studies to resolve the protein conformational changes due to the limitations regarding the time scale, data size and computational cost. In recent years, normal mode analysis based on coarse-grained e...
متن کاملCoarse-Grained Models Reveal Functional Dynamics - I. Elastic Network Models – Theories, Comparisons and Perspectives
In this review, we summarize the progress on coarse-grained elastic network models (CG-ENMs) in the past decade. Theories were formulated to allow study of conformational dynamics in time/space frames of biological interest. Several highlighted models and their underlined hypotheses are introduced in physical depth. Important ENM offshoots, motivated to reproduce experimental data as well as to...
متن کاملElasto-Thermodiffusive Response in a Two-Dimensional Transversely Isotropic Medium
The present article investigates the elasto-thermodiffusive interactions in a transversely isotropic elastic medium in the context of thermoelasticity with one relaxation time parameter and two relation time parameters. The resulting non-dimensional coupled equations are applied to a specific problem of a half-space in which the surface is free of tractions and is subjected to time-dependent th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 320 5 شماره
صفحات -
تاریخ انتشار 2002